Float switch
 For industrial applications, intrinsic safety Ex i Model RLS-4000 (models with approval: EX-SR 10 ... EX-SR 21)

1565
 EC $\xlongequal{=}$

Applications

- Combined level and temperature measurement of liquids in machine building
- Control and monitoring tasks for hydraulic power packs, compressors and cooling systems

Special features

- Media compatibility: Oil, diesel, refrigerants and other liquids
- Level: Up to 4 switching outputs, freely definable as normally open, normally closed or change-over contact
- Level and temperature: Up to 3 switching outputs, freely definable as normally open, normally closed or change-over contact and 1 bimetal temperature switch or Pt100/Pt1000, accuracy: Class B
- Potential-free switching reed contacts

Depending on customer wishes, the switching functions of normally open, normally closed or change-over can be realised for the defined liquid level.

The optional temperature output enables the medium temperature to be monitored by means of a preconfigured bimetal temperature switch or a Pt100/Pt1000 resistance signal.

Float switch, cable outlet, model RLS-4000

Measuring principle

A permanent magnet built into the float triggers, with its magnetic field, the potential-free reed contacts built into the guide tube. The triggering of the reed contacts by the permanent magnet is contact-free and thus free from wear.

Specifications

Float switch, model RLS-4000	Level	Temperature (option)
Measuring principle	Potential-free switching reed contacts are triggered by a magnet in the float	Bimetal switch or Pt100/Pt1000 measuring resistor in pipe end
Measuring range	Guide tube length L : $60 \ldots 1,500 \mathrm{~mm}$ (2.5 ... 59 in), other lengths on request	Bimetal switch: $30 \ldots 150^{\circ} \mathrm{C}\left(86 \ldots 302^{\circ} \mathrm{F}\right)$ Pt100/Pt1000
Output signal ${ }^{1)}$	Up to 4 switch points, depending on the electrical connection: L-SP1, L-SP2, L-SP3, L-SP4¹)	- Bimetal switch - Pt100, 2-wire - Pt1000, 2-wire
Switching function	Alternatively normally open (NO), normally closed (NC) or change-over (SPDT) contact ${ }^{1)}$ - on rising level	Alternatively normally open (NO) or normally closed (NC)
Switch position	Specified in mm, starting from the upper sealing face (L-SP1 ... L-SP4) At the end of the guide tube $\approx 45 \mathrm{~mm}$ ($\approx 1.8 \mathrm{in}$) cannot be used for switch positions.	
Distance between switch points ${ }^{2)}$	Minimum distance L-SP1 to the upper sealing face: 50 mm (2.0 in) Minimum distance between the switch points: 50 mm (2.0 in), for floats with outer $\varnothing \mathrm{D}=44 \mathrm{~mm}(1.7 \mathrm{in}), 52 \mathrm{~mm}$ (2.0 in) $30 \mathrm{~mm}(1.2 \mathrm{in})$, for floats with outer $\varnothing \mathrm{D}=25 \mathrm{~mm}(1.0 \mathrm{in}), 30 \mathrm{~mm}$ (1.2 in) Minimum distance with 3 switch points: 80 mm (3.1 in), either between L-SP1 and L-SP2 or L-SP2 and L-SP3 Minimum distance with 4 switch points: 80 mm (3.1 in), between SP2 and SP3	
Safety-related maximum values	Only for connection to a certified intrinsically safe circuit with max. $\mathrm{U}_{\mathrm{i}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{i}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{i}}=0.9 \mathrm{~W}, \mathrm{C}_{\mathrm{i}}=0 \mathrm{nF}, \mathrm{L}_{\mathrm{i}}=0 \mu \mathrm{H}$	
Accuracy	$\pm 3 \mathrm{~mm}$ switch point accuracy incl. hysteresis, non-repeatability	- Bimetal switch: $\pm 5^{\circ} \mathrm{C}$ switch point accuracy, $\pm 20^{\circ} \mathrm{C}$ hysteresis - Pt100, Pt1000: Class B per DIN EN 60751
Mounting position	Vertical $\pm 30^{\circ}$	
Process connection	- G 1, installation from outside ${ }^{3)}$ - G $1 \frac{1}{2}$, installation from outside - G 2, installation from outside - Flange DN 50, form B per EN 1092-1 (DIN 2527), PN 16, installation from outside	 - G $1 / 4$, installation from inside ${ }^{3)} 4$) - $G 3 / 8$, installation from inside ${ }^{4)}$ - $\mathrm{G} 1 / 2$, installation from inside ${ }^{4)}$
Material - Wetted - Non-wetted	Process connection, guide tube: Stainless steel 316Ti Case: Stainless steel 316Ti	Float: See table on page 3 Electrical connection: See table on page 3
Permissible temperatures Medium Ambient Storage	$\begin{array}{ll} -30 \ldots+80^{\circ} \mathrm{C}\left(-22 \ldots+176^{\circ} \mathrm{F}\right) & -30 \ldots+120^{\circ} \mathrm{C}(-22 \\ -20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right) & \\ -20 \ldots+80^{\circ} \mathrm{C}\left(-4 \ldots+176^{\circ} \mathrm{F}\right) & \end{array}$	$\left.+248{ }^{\circ} \mathrm{F}\right)^{6)} \quad-30 \ldots+150{ }^{\circ} \mathrm{C}\left(-22 \ldots+302^{\circ} \mathrm{F}\right)^{7)}$
Permissible temperatures (depending on the temperature class) - Surface temperature - Process temperature - Ambient temperature	$\begin{array}{ll} \mathrm{T} 3 & \mathrm{~T} 4 \\ \leq 150^{\circ} \mathrm{C}\left(\leq 302^{\circ} \mathrm{F}\right) & \leq 135^{\circ} \mathrm{C}\left(\leq 275^{\circ} \mathrm{F}\right) \\ \leq 150^{\circ} \mathrm{C}\left(\leq 302^{\circ} \mathrm{F}\right) & \leq 130^{\circ} \mathrm{C}\left(\leq 266^{\circ} \mathrm{F}\right) \\ \leq 60^{\circ} \mathrm{C}\left(\leq 140^{\circ} \mathrm{F}\right) & \leq 60^{\circ} \mathrm{C}\left(\leq 140^{\circ} \mathrm{F}\right) \end{array}$	$\begin{array}{ll} \mathrm{T} 5 & \mathrm{~T} 6 \\ \leq 100^{\circ} \mathrm{C}\left(\leq 212^{\circ} \mathrm{F}\right) & \leq 85^{\circ} \mathrm{C}\left(\leq 185^{\circ} \mathrm{F}\right) \\ \leq 95^{\circ} \mathrm{C}\left(\leq 203^{\circ} \mathrm{F}\right) & \leq 80^{\circ} \mathrm{C}\left(\leq 176^{\circ} \mathrm{F}\right) \\ \leq 60^{\circ} \mathrm{C}\left(\leq 140^{\circ} \mathrm{F}\right) & \leq 60^{\circ} \mathrm{C}\left(\leq 140^{\circ} \mathrm{F}\right) \end{array}$

1) Version with 4 switching outputs for level is not available with temperature outpu
2) Smaller minimum distances on request
3) Up to 3 switching outputs for level
4) Only for versions with cable outlet
5) Only with float outer diameter $\varnothing \mathrm{D}=30 \mathrm{~mm}(1,2 \mathrm{in})$
6) Not with cable material: PVC, PUR; not with connection housing $58 \times 64 \times 36 \mathrm{~mm}$
7) Only with cable material: Silicone or connection housing $75 \times 80 \times 57 \mathrm{~mm}$

Electrical connections	Level Max. switch point definition	Ingress protection per IEC/EN 60529	Protection class	Material	Cable length
Cable outlet	$\begin{aligned} & \text { 4 NO/NC } \\ & 4 \text { SPDT } \end{aligned}$	IP54	11	PVC	■ $2 \mathrm{~m}(6.5 \mathrm{ft})$ 5 m (16.4 ft) other lengths on request
Cable outlet	$\begin{aligned} & \square 4 \mathrm{NO} / \mathrm{NC} \\ & \text { ■ SPDT } \end{aligned}$	IP54	II	PUR	
Cable outlet	4 NO/NC 2 NO/NC + 1 SPDT	IP54	II	Silicone	
"Standard" connection housing Dimensions: $75 \times 80 \times 57 \mathrm{~mm}$ ($2.9 \times 3.1 \times 2.2 \mathrm{in}$) For cable diameter: $5 \ldots 10 \mathrm{~mm}$ (0.2 ... 0.4 in)	$\begin{aligned} & \square 4 \mathrm{NO} / \mathrm{NC} \\ & 4 \mathrm{SPDT} \end{aligned}$	IP54	1	Aluminium, glands from polyamide, brass, stainless steel	-
"Compact" connection housing Dimensions: $58 \times 64 \times 36 \mathrm{~mm}$ ($2.3 \times 2.5 \times 1.4 \mathrm{in}$) For cable diameter: $5 \ldots 10 \mathrm{~mm}$ (0.2 ... 0.4 in)	$\begin{aligned} & 4 \text { NO/NC } \\ & 2 \text { NO/NC }+1 \text { SPDT } \\ & 2 \text { SPDT } \end{aligned}$	IP54	1		

Float	Form	Outer diameter \varnothing D	Height H	Operating pressure	Medium temperature	Density	Material
T	Cylinder ${ }^{1)}$	44 mm (1.7 in)	52 mm (2.0 in)	$\begin{aligned} & \leq 16 \mathrm{bar} \\ & (\leq 232 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & \leq 150^{\circ} \mathrm{C} \\ & \left(\leq 302^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \geq 750 \mathrm{~kg} / \mathrm{m}^{3} \\ & \left(46.8 \mathrm{lbs} / \mathrm{ft}^{3}\right) \end{aligned}$	316 Ti
	Cylinder ${ }^{2)}$	30 mm (1.2 in)	36 mm (1.4 in)	$\begin{aligned} & \leq 10 \mathrm{bar} \\ & (\leq 145 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & \leq 80^{\circ} \mathrm{C} \\ & \left(\leq 176{ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \geq 850 \mathrm{~kg} / \mathrm{m}^{3} \\ & \left(53.1 \mathrm{lbs} / \mathrm{ft}^{3}\right) \end{aligned}$	316 Ti
	Sphere ${ }^{3)}$	52 mm (2.0 in)	52 mm (2.0 in)	$\begin{aligned} & \leq 40 \text { bar } \\ & (\leq 580 \mathrm{psi}) \end{aligned}$	$\begin{aligned} & \leq 150^{\circ} \mathrm{C} \\ & \left(\leq 302^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & \geq 750 \mathrm{~kg} / \mathrm{m}^{3} \\ & \left(46.8 \mathrm{lbs} / \mathrm{ft}^{3}\right) \end{aligned}$	316 Ti

1) Not with process connection G 1, guide tube length $L \leq 100 \mathrm{~mm}$ (≤ 3.94 in)
2) Guide tube length $\leq 1,000 \mathrm{~mm}(\leq 39.4 \mathrm{in})$, switch points max. 3 NO/NC or 2 SPDT without bimetal switch, when a Pt100/Pt1000 is selected - max. 3 NO/NC or 1 SPDT 3) Not with process connection G 1, G $11 / 2$, guide tube length $L \leq 100 \mathrm{~mm}$ ($\leq 3.94 \mathrm{in}$)

Connection diagram

Cable outlet ${ }^{4)}$						
	Level				Temperature (option)	
	Normally open/normally closed (NO/NC)				Bimetal switch	Platinum measuring resistor
\square	L-SP1 WH BN	L-SP2 GN YE	$\begin{gathered} \text { L-SP3 } \\ \text { GY } \\ \text { PK } \end{gathered}$	$\begin{gathered} \mathrm{L-SP4} \\ \mathrm{BU} \longrightarrow \\ \mathrm{RD} \longrightarrow \end{gathered}$	Switch point T-SP WH BN	Pt100/Pt1000 $\begin{array}{cc} \mathrm{WH} & + \\ \mathrm{BN} & - \end{array}$
	Change-over contact (SPDT)				Bimetal switch	Platinum measuring resistor
	4 switc L-SP1 WH BN GN	L-SP2 YE GY PK	$\begin{gathered} \mathrm{L}-\mathrm{SP} 3 \\ \mathrm{BU}-2 \\ \mathrm{RD}- \\ \mathrm{BK}- \end{gathered}$	$\begin{aligned} & \text { L-SP4 } \\ & \quad \text { VT } \\ & \text { GYPK }-7 \\ & \text { RDBU } \end{aligned}$	Switch point T-SP $\begin{aligned} & \mathrm{WH} \longrightarrow \\ & \mathrm{BN} \longrightarrow \end{aligned}$	Pt100/Pt1000 $\begin{array}{cc} \mathrm{WH} & + \\ \mathrm{BN} & - \end{array}$

[^0]
Aluminium case

Legend

SP1 - SP3	Switch points	GY	Grey	BK	Black
WH	White	PK	Pink	VT	Violet
BN	Brown	BU	Blue	GYPK	Grey/Pink
GN	Green	RD	Red	RDBU	Red/Blue

Electrical safety	DC $2,120 \mathrm{~V}$
Insulation voltage	

Dimensions in mm (in)

Legend
L Guide tube length
T Non-usable range for switch positions

Process connection

Installation from outside

G	L_{1}
G 1	$16 \mathrm{~mm}(0.63 \mathrm{in})$
G 1 $1 / 2$	$18 \mathrm{~mm}(0.71 \mathrm{in})$
G 2	$20 \mathrm{~mm}(0.79 \mathrm{in})$

Installation from inside

G	L_{1}
G $1 / 8 \mathrm{~B}$	$12 \mathrm{~mm}(0.47 \mathrm{in})$
G $1 / 4 B$	$12 \mathrm{~mm}(0.47 \mathrm{in})$
G $3 / 8 \mathrm{~B}$	$12 \mathrm{~mm}(0.47 \mathrm{in})$
G $1 / 2 B$	$14 \mathrm{~mm}(0.55 \mathrm{in})$

Flange
DN 50, form B per EN 1092-1 (DIN 2527), PN 16

Accessories

Description	Intrinsically safe repeater power supply, model IS Barrier Input $0 / 4 \ldots 20 \mathrm{~mA}$, supplying and non-supplying Bidirectional HART	
For details see data sheet AC 80.14	14117118	

Approvals

Logo	Description	Country
	EU declaration of conformity - Low voltage directive - RoHS directive - ATEX directive Hazardous areas II 1/2G Ex ia IIC T3...T6 Ga/Gb II 2D Ex ib IIIC T85 ${ }^{\circ} \mathrm{C}$...T150 ${ }^{\circ} \mathrm{C}$ Db	European Union
IEC TEOEX	IECEx Hazardous areas Ex ia IIC T3...T6 Ga/Gb Ex ib IIIC $785^{\circ} \mathrm{C} \ldots \mathrm{T} 150^{\circ} \mathrm{C} \mathrm{Db}$	International

Manufacturer's information and certificates

Approvals and certificates, see website

Ordering information

Model / Level and temperature (option) output signals / Switching function / Electrical connection / Process connection /
Guide tube length L / Medium temperature

WIKA

WIKA Alexander Wiegand SE \& Co. KG
Alexander-Wiegand-Straße 30
63911 Klingenberg/Germany
Tel. $\quad+499372$ 132-0
Fax +49 9372 132-406
info@wika.de
www.wika.de

[^0]: 4) When choosing a temperature output signal, the PIN assignment of the level switch points deviates (see product label).
